/* True Flash File System (TrueFFS) for pSOS/x86/CAD-UL. */

1. True Flash File System (TrueFFS) is a software package supporting

 the following flash devices:

 M-Systems DiskOnChip 2000

 M-Systems PCMCIA Flash Card series 2000

 M-Systems PCMCIA LDP and LDPC Flash Cards

2. Contents of the TrueFFS distribution.

 README - this file

LIB\X86\TFFS.LIB - TrueFFS x86 core library

LIB\X86\TFFSCFG.LIB - sample TrueFFS x86 configuration library

LIB\X86\TFFSCFG.C - source file for TrueFFS x86 configuration

library

INCLUDE\FLDRVPSS.H - TrueFFS include file for C/C++

DEMO\TFFSDEMO.C - TrueFFS demo program

3. Integration of TrueFFS software into pSOS system.

 3.1. Change your makefile to include TrueFFS core library

 LIB\X86\TFFS.LIB into your link.

 3.2. If you are using M-Systems DiskOnChip 2000 you should include

 LIB\X86\TFFSCFG.LIB into your link.

 If you are using flash devices other then M-Systems DiskOnChip 2000

 (for instance M-Systems PCMCIA Flash Cards series 2000) you have to

 customize Section 1 in LIB\X86\TFFSCFG.C TrueFFS configuration file,

 compile and include this file into your link instead of

LIB\X86\TFFSCFG.LIB.

 3.3. In the section of your SYS_CONF.H listing IO devices you should add

 the following lines (assuming you want TrueFFS devices to appear at

 major device number 8):

 #define SC_DEV_TFFS 8 /* TrueFFS major device number */

 #define DEV_TFFS (SC_DEV_TFFS << 16)

In case if your system has more then one flash device (two PCMCIA

sockets are considered as two separate devices) all of them will

 share a major device number (SC_DEV_TFFS) and will be distinguished

 by minor device number: first flash device has minor device number 0,

second one has minor device number 1 and so on.

 3.4 Include INCLUDE\FLDRVPSS.H into your DRV_CONF.C

 3.5. add the following call to your DRV_CONF.C in order to install

 TrueFFS driver in pSOS driver table :

 InstallDriver(SC_DEV_TFFS, TFFSInit, /* dev_init() */

 NULLF, /* dev_open() */

 NULLF, /* dev_close() */

 TFFSRead, /* dev_read() */

 TFFSWrite, /* dev_write() */

 NULLF, 0, 0, 0); /* dev_ioctl() */

 3.6. Once in your application (normally from 'root' task) you should call

 de_init() to initialize TrueFFS driver before any attempt to perform

 I/O on it.

 Here is an example taken from DEMO\TFFSDEMO.C:

 unsigned long iopb[5], err;

 char retval, *data_ptr;

 err = de_init(DEV_TFFS, (void *)iopb, (void *)&ioretval,

 (void **)&data_ptr);

 if (err)

 printf("\nTrueFFS initialization error %X\n", err);

 3.7. Normally TrueFFS driver is used in conjunction with pHILE+ so make

 sure pHILE+ is included into your link.

 While TrueFFS driver doesn't impose any special requirements on pHILE+

 configuration, it is generally a good idea to browse through pHILE+

section in SYS_CONF.H to check if it provides sufficient configuration

for your application.

4. Demo program DEMO\TFFSDEMO.C shows how TrueFFS driver could be initialized,

 flash device could be mounted and pHILE+ could be used for file I/O on

 this flash device.

5. Here is an example of formatting Flash device.

struct ioparms formatRequest;

tffsDevFormatParams formatSpec;

formatRequest.in_dev = 0; /* Flash device #0 */

formatRequest.in_iopb = (ULONG *) (&formatSpec);

formatSpec.formatFlags = FTL_FORMAT;

 /* Please note that the bootimage area of Flash device is */

 /* preserved by setting formatSpec.formatParams.bootImageLen */

 /* to 48K. This is normally needed for M-systems DiskOnChip 2000; */

 /* set this field to zero for M-Systems PCMCIA Flash Cards. */

if (/* M-Systems DiskOnChip 2000 */)

 formatSpec.formatParams.bootImageLen = (48 * 1024L);

else /* M-Systems PCMCIA flash Cards */

 formatSpec.formatParams.bootImageLen = 0L;

formatSpec.formatParams.percentUse = 99;

formatSpec.formatParams.noOfSpareUnits = 1;

formatSpec.formatParams.vmAddressingLimit = 0x10000l;

formatSpec.formatParams.progressCallback = NULL;

formatSpec.formatParams.volumeId[0] =

formatSpec.formatParams.volumeId[1] =

formatSpec.formatParams.volumeId[2] =

formatSpec.formatParams.volumeId[3] = 0;

formatSpec.formatParams.volumeLabel = NULL;

formatSpec.formatParams.noOfFATcopies = 2;

formatSpec.formatParams.embeddedCISlength = 0;

formatSpec.formatParams.embeddedCIS = NULL;

if (tffsDevFormat(&formatRequest) != 0)

 printf("\nFormatting error!");

6. All the error codes returned by TrueFFS driver are described in

 INCLUDE\FLDRVPSS.H.

7. Booting pSOS from DiskOnChip 2000.

 7.1. There are two basic pSOS boot scenarios described in "pSOSystem.

Getting Started" manual, Chapter 7 "Boot Disks":

- one step boot using Primary BootLoader (PBL)

- two step boot using both Primary and Seconadry (SBL) BootLoaders

Currently M-Systems DiskOnChip 2000 supports one step boot scenario

only.

 7.2. You will need the following files:

 - DFORMAT utility from M-Systems standard utility set for DOS

 - DOC105.EXB file (or whatever .EXB file is available from M-Systems

 standard utility set for DOS)

 - MKBOOT.EXE utility from pSOS distribution

 - pSOS bootimage file (PSOSBOOT.SYS)

Standard DiskOnChip 2000 utility set for DOS could be downloaded

from www.m-sys.com

 7.3. Here is a procedure for booting pSOS from DiskOnChip 2000:

 step 1. Use floppy to boot DOS on the target board

 step 2. Use DFORMAT to re-format DiskOnChip 2000:

 DFORMAT /WIN=xxxx /S=DOC105.EXB /FIRST /Y

 /WIN=xxxx specifies DiskOnChip 2000 memory

 window segment, for example /WIN=D800

 step 3. Boot MS-DOS on the target board and check that

 DiskOnChip 2000 has installed itself at the drive letter C:

 dir C:

 Change to the drive C:

 C: <Enter>

 step 4. Run pSOS utility MKBOOT.EXE:

 a:\MKBOOT <Enter>

 and type at the prompt:

 BUILD C: <Enter>

 Normally MKBOOT will ask you twice to confirm your intention

 to overwrite bootsector on disk C:

 step 5. Copy your PSOSBOOT.SYS to the root directory of the

 DiskOnChip 2000.

 7.4. Now DiskOnChip 2000 is ready to boot pSOS.
